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An equation is constructed for the transverse vibrations of isotropic elastic bars 
of central ly-symmetr ic  cross section, which is a refinement of the Bemoulli-Euler 
equation. A comparison with other results on refined equations of bars is given. 

1, Formulat ion  of  the problem,  Let us consider a rectilinear elastic bar 
of length 2 l  and constant cross section ~ in a Cartesian x, x a coordinate system. 
(The Greek indices take on the values 1, 2). In the undeformed state the bar axis coin- 
cides with the x-axis ,  and the center of gravity with the origin. Let w, wa denote the 
projections of the displacement vector on the x,  x a axes, and h the bar diameter (the 
maximum distance between points of the boundary of the domain ~ / .  The bar is loaded 
along the lateral surface and along the endfaces by surface forces with components p ,  
p~ dependent on the coordinates and the time t. There are no mass forces. 

Let us l imit  ourselves to the examination of bars of  central ly-symmetric  cross section. 
A section which contains a point with coordinates - -  x a together with a point with co-  
ordinates x a is understood to be central ly-symmetric .  In this case the general dynamic 
problem decomposes into two independent problems, namely, the transverse vibrations 
(w is odd, wet are even functions of x a) , and the longitudinal vibrations and torsion 
(w is even and wa are odd functions of x ~, see Appendix). The problem of transverse 
vibrations will henceforth be cmlsidered. 

Saint Venant [1] solved the static problem of the transverse deformation of a bar,whose 
lateral surface is load-free.  The solution in terms of displacements is 

w = e~ (~)x ~ + g ( ~ ) ,  w~ = u~ (~) + ~/4x~ (x)R~ (1. 1) 

where e~, uct, X~ are functions of x, g (x =) satisfies the equation 

~tag = - -  X~Ox [(~, + i x) X~ + (~, -4- 2~)0~¢e~1 

at a l l  points of the sect ion ~ and the condi t ion 

On ~ -k  Oxu~, 

on the boundary F. Hem 

la~ _. ~ J xax ~ dR,  R a~ : 2 (xa$ ~ - -  I °tf~) - -  5 af~ (x'~x v - -  I~),  0 x -=- 

A iS the Laplace operator in the variabIes x a, ~ and ~ are Lamg parameters and n ~ are 
components of  the unit external normal vector to the contour r .  

The functions (1. 1) represent an exact  solution of the elasticity theory equations if the 
surface forces on the endfaces, statically equivalent to a given force and a couple, are 
selected in a special way. It has been proved by Toupin [2] that the stresses caused by 
a self-equilibrated load on the bar endface decreat~ exponentially with distance from 
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the endface. An estimate ?0 / h ~ ? has been obtained in [3] for a constant ? in the 
exponential, where ~o depends only on the shape of the cross section. Therefore, the stres- 
ses caused by a self-equilibrated load are functions of boundary-layer type, and the Saint- 
Venant solution describes the internal state of stress of the bar completely (the difference 
between the Saint-Venant and exact solution does not exceed ch~ as h -~ 0 ,  where q 
is any arbitrarily large number). 

The problem of the state of stress of a bar under an arbitrary lateral load could be re- 
duced to the above if some solution of the elasticity theory equations satisfying the boun- 
dary conditions on the lateral surface were to be constructed successfully. However, such 
solutions are obtained only in some particular cases [ 4 -  6]. An exact solution of the 
problem has been found successfully in the dynamical theory of beam bending for the 
vibrations of an infinite circular cylinder whose lateral surface is load-free [7, 8], and 
of an infinite rectangular bar in a state of plane strain or plane stress [9]. Difficulties 
in obtaining an exact solution make necessary the construction of approximate equations 
for the theory of bars. 

The most consistent approach is derivation of approximate equations by asymptotic 
methods using the presence of the small parameter h / l. The papers [10, 11] are devoted 
to asymptotic methods in the theory of bars. Approximate equations of the static prob- 
lem of deformation of a bar loaded arbitrarily along the lateral surface are obtained in 
[10] by the method of asymptotic integration of the equations of three-dimensional elas- 
ticity theory. This method was used in [11] to derive approximate equations of the long- 
itudinal vibrations of circular bars. Asymptotic methods have not been applied to the 
problem of the transverse vibrations of beams. 

The approximate equations of the theory of vibrations of bars are usually obtained by 
using heuristic hypotheses relative to the nature of the states of strain and stress. The 
concept of an asymptotically exact model arises in an appraisal of these hypotheses from 
the viewpoint of the asymptotic approach. Namely, we call the model (or equations) 
asymptotically exact if all the elastic effects whose energy is of the same order of small- 
hess are included in the consideration when taking some effect into account. The model 
corresponding to the hypothesis of plane sections (the BemouUi-Euler model) is asymp- 
totically exact and yields the first approximation (see Sect. 7). 

Extensive literature (see [ 1 2 -  17]) is devoted to constructing refinements of the 8er- 
noulli-Euler equations, However, no asymptotically exact equations have been obtained 
in the papers mentioned (see Sect. 8). 

The purpose of this paper is the formulation of hypotheses for the second approxima- 
t, ion and the foundation of the asymptotic accuracy of the corresponding model. 

We derive a system of equations describing the transverse vibrations of a bar from the 
condition of an extremum of the functional of linear elasticity theory [18] 

tl  

= I • [I - + I ÷ 
tl V 6 

2 U  = ~. (e,~) 2 + 2keg= ~ + (X + 2~) s ~ + 2 ~ = ~ e  ~ + 4p~=e = 

e ~  = w ( ~ . ~ ) .  8 - - - -  OxW, 28,, = w.~ + Oxw~ 

Here V is the volume occupied by the bar, o is the mrface bounding the volume V, 
v is the modulus of the velocity vector of the bar particles, and U is the intemalenergy 
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of unit  volume.  A c o m m a  in the subscripts means differentiat ion with respect to x a. The 
variations at the in i t i a l  t I and final t~ t imes  are considered to be zero. 

Making a hypothesis re la t ive  to the dependence of the d isp lacement  vector  on the 
transverse coordinates and integrat ing over the bar cross section in ( L  2), we obtain a 

functional defined in terms of functions of x,  t .  
The integrand in the functional  wil l  contain terms of different orders of smallness in 

h.  The n - t h  approximat ion equations are obtained in taking the variat ion of the func- 
t ional  in which terms of order h 2n are contained and terms of higher order in h are dis- 

carded.  In determining the orders of magni tude we comider  that different iat ion with re- 
spect  to x and t does not decrease the order of  smallness. 

It is known from the exac t  solutions of the problem of free transverse vibrations that 
there exists a countable  number of qual i ta t ive ly  dist inct  types of vibrations, and corres- 
pondingly, of  branches of the dispersion curve. The Bemoull i-Euter  equations describe 
long-wave vibrations correslxmding to the first branch of the dispersion curve. Differen- 
t ia t ion with respect to t ime  hence increases the order of smallness of the quanti t ies by 
one. We take a more genera l  assumption in constructing refinements to the Bernoulli-  
Euler equat ions:  di f ferent ia t ion with respect to t ime  does not decrease the order of  smal l -  
ness of the quantit ies.  We consider the t ime  dependence of  the externa l  forces to be such 

that  this asmmption is not v iola ted.  
To obtain the second approximation equations, we take the foUowing hypotheses re la-  

t ive to the d isp lacement  vector  components:  

//) = ea (x,  t) x a + g ( x ,  x a,  t),  w a ~-- uc, (x, t) 71- 1/4 ~ (x, t) ]{a 3 (1 .3)  

In fact  the d isp lacement  vector  is represented in the same form as in the Saint -Venant  
solution (1. 1). We assume that  the fimetions ua ,  e~, X~ are of order h °, (p~ = e~ + 
i) xUa is of order h s and g is of order h a. With respect to the externa l  forces, we assume 
that  p ,-- h z, p , ,  --- h s o n  the l a t e ra l  surface, p N h, p a  N h 2 on the endfaces. 

Henceforth,  for s impl ic i ty  we also assume that p = ra a (x ,  t) x ~ on the endfaces.  The 
foundation of the hypotheses (1. 3) is considered in Sect. 7. 

Because of  the def ini t ion of Ra~  , the functions ua (x, t) have the meaning of a 

mean  transverse d i sp lacement  u s  (x,  t) = <w=) .  
Without l imi t ing  the general i ty ,  the constraint  

<g~a> = 0 (1.4) 
can be impo~d on the function g . 

I .  Second I p p z o x l m s t l o n  e q u a t i o n l .  After substituting (L 3) into (1. 2) 
and discarding smal l  terms of order h e and higher, we obtain a second approximation 

functional  t, l 

2 I = p ~ I d '  I ( c~'u~'a'ua + Iaf~cOte~Ote~ + -~<R:R~'>OtX~Otx~)dx-- (2.1, 
t, --1 

f ,  l 

t t  

I dt I ( 2pau" + 2peax~ + -.~- p~,xatt j d~ 
| t  el 
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~ -  I A O t = -~V , ( A ) = 

' [~( i a ~ ,, z 

The function g enters I just in terms of 0 .  For p = 0 the quantity JtO has the 
meaning of a shear energy. The required value g evidently makes the functional • 
a minimum, The minimum value O0 of the functional • is a function of q~c`, 0xY~z. 
Setting • --  • o in (2. 1) we obtain a functional defined by functions of z and t. Va- 
riation of this functional results in the second approximation equations and boundary 
conditions. To evaluate (Do in the functional • it is convenient to introduce G as 
the required function in place of g by means of the formula 

G ~--- g "~- Z" [q~c` -31- 1/12 (R~ - -  4~r~ "31- 28~/~y) 0 x X~ ] (2 ,3 )  

Condition (1. 4) for the function g goes over into a condition for G 

<Gx~> = ~ ,  x ~ = I ~ ~ + T~OxX~ (2.4) 

Seeking the minimum of the functional • and G according to the condition (2.4), we 
obtain 

AG ---- ?~x ~, (2.5) 

On --  -'5"- 

Here ~c` (x, t) ate Lagtange multipliers corresponding to the condition (2.4). The 
boundary condition for the function G turns out to be simpler than for g. The function 
0 0  (gc`, 0xZc`) is a quadratic form of its arguments and can be repre~nted as 

200  (×c`, 0xXc`) = A"~OxZc`O=:Za ÷ B~xc`xa ÷ 2C~'hcc`O.,Xa (2. 6) 

The tensors A a~ and B~a ate symmetric, but C ~a is generally nonsymrtmtiic. They 
all depend on the geometry of the cross section and the longitudinal load on the lateral 
surface p. These termors can alma depend on x, t because of the dependence of p on 
x, t. They are determined just by the cross-section geometry for a zero longitudinal load 
on the lateral surface. 

It follows from the expression (2.2) for • that 0 0  ..~ h 4. The coefficients in (2. 6) 
are of the order of 

A ~  ,.~h 4, B~a , ~ h  -4, C~a N h  ° 

Varying the functional (2.1), we obtain an equation for uc` 

pOt2uc` - -  ~/~l~ (o ~ B . ~  ÷ a,)c. ,~x ~) - -  Pc` / f l  (2. ~) 

x / ~  (B~×a + O~C.¢~X t~) = - ~  <Pc,>, • =:t::t 

The equation for ec` is 

pOt~ec` - -  ~,OxZ~ - -  (L ÷ 2lz)Ox2ec` ÷ z/21a (B~tt~ ÷ OxCc`t~) = Nc` / f l  (2.8) 

I~ (~,X~ ÷ (~ -4- 2~)O~ea) ---- ~ <px~>, z = zizl 

The equation for X~ is 
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pOteX~ <B~B~ "c) -~ 16I~ [(~, + ~t)~ + ~0xe~] - -  (2.9) 

8p~ [Ox (Tc,.~B{ + C~)×~ + Ox 2 (Tj~C.~ + A~)X~] = 4Dc,/~2 
, T "V ~t [(T:~B~ + C~)×~ + Ox ( ~C.~ + A~)X~] ~ 1/2 <p~R~> 

Here x =-: -4- 1 
D~, = j'B~p~dF, P~, = f P~'dF, N~ = S px~,dF 

P [' F 

8,  R e | o l v t n g  e q u & t i o t l ,  We obtain the resolving equation of the sys tem(2 .7) -  
(2. 9) which is a refinement of the Bemoulli-Euler equation. Since the inertial and trans- 
verse forces in this latter are of identical order of smallness, and differentiation with re- 
spect to x does not change the order of magnitude, it should be considered that differ- 
entiation with respect to t increases the order of smallness by one. This ~s~rtion is va- 
lid if  short-wave processes are excluded from consideration [19]. 

Solving the system (2. 7) - -  (2.9) for u , ,  discarding the smgll terms I~Ot4u~ because 
of the assumptions made, and considering the coefficients of the quadratic form (2.6) 
independent of x, we obtain 

pOt2u~, -a t- EI~OxtU~ --  pI~Ot~Ox2U~ -4- E'T'~Ox6U~ -~ (3.1) 

[ " 1 Pc, -k- OxN,~ -~ W Ox2 D~ 

where E is the Young's modulus, ~ is the Poisson's ratio, and ~ a ~  is a symmetric ten- 
sor defined in terms of the coefficients of the quadratic form (2.6) 

• "~  = 4  ( i +  ~) B;~ + 4~ (Cc,.B-%+ r ~ )  - ~ "~ - - x ~ " ~  - -A 

Here B ~  denotes the tensor inverse to B ~  and B[~B~'~ = ~ .  Equations (3.1) are 
second approximation equations for the mean displacements u a of transverse vibrations 
of a bar of oentrally-symmet~ic cross section. In comparing the second approximation 
equations obtained by different authors, it should be kept in mind that mutually equiva- 
lent equations within the framework of this approximation can differ in form [19]. In 
fact, let us represent the resolving equation in the case of free vibrations in the operator 

form (L1 + h~L~)u = (M1 -4- h'M2)P 

where La, M z are operators corresponding to the BemouUi-Euler equation. All equa- 
tions of the form 

(L z ~ h2Ls')u = (M1 q- hSM~')P 

are equivalent to the given equation if (D is some differential operator) 

Ls' - -  L s =  DL1, Ms' --  M~ = DMz 
Selecting the operator D in a suitable manner, we obtain the resolving equations equi- 
valent to (3. 1) but without the term Oxeuf~ 

- z~  ,t POtful, -4- El~Ox~u~ --  P [I~ q- I .~tF..] Ot~Ox~ut~ = (3.2) 

(F~ is the inverse tensor to I ~ ) .  
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4. Co l f f l c len ts  of the zeeolvln S equation, lep~rAtion of the 
v l b r & t l o n |  And s y m m e t r y  o f  t h e  c r o s s  s e c t l o n ,  The system (3. 2) con- 
rains two equations for the displacement vector component u~. In general, the vibrations 
of one axis of the bar cause vibrations along the other. The question arises as to whether 
a coordinate system x a exists in which the vibrations along two axes turn out to be inde- 
pendent ? The answer to this question is affirmative for the first approximation equation, 
since the tensor I ~  can be reduced to diagonal form by an orthngonal transformation. 
In the case of a second approximation equation, the answer is related to the symmetry 
properties of the cross section. 

The cross sections can be classified by referring to one class of sections which are in- 
variant relative to the same subgroup of a group of orthogonal transformations on a plane. 
Each symmetry group wiU contain a rotation through the angle ~ since the section is 
centraUy- symmetric. 

The tensors (4.1) are invariant relative to the symmetry group of the cross section. 
(This assertion is valid if the longitudinal load on the lateral surface p has the symmetry 
of the cross section). According to the Gerrnan-Hermann theorem (see [20, 91]), a ten- 
sor of second rank which is invariant relative to the group of rotations containing a rota- 
tion through an angle less than ~ is spherical. Hence, "A a~ : A ~  ~ ,e tc . ,  for aU ten- 
sots (4.1) for cross sections invariant relative to such groups. According to (3.2), the 
transverse vibrations are separated in any. orthogonal coordinate system. 

Shown in Fig. 1 is a cross section which is 
invariant relative to rotations through ~ / 2. 
The tensors introduced above which character- 
ize this cross section are spherical, and the 
corresponding bar will behave as a circular 
bar for transverse vibrations in a second ap- 
proximation. This fact was not evident be- 

[ forehand since not even two axes exist in the 
initial ttu-ee-dimensional problem along which 

Fig. 1 Fig. 2 the transverse vibrations occur separately. 
There are just two subgroups of the ortho- 

gonai group which contain no rotation through an angle less than ~. One consists of two 
nontrivial (different from the identity) transformations: rotation through an angle ~ and 
reflection relative to some axis L.  In this case, by selecting the xl-axis alongL, the x ~- 
axis perpendicular to L,  we obtain ,412 ~ A ~1 - -  0 ,etc. for aU the teusors (4. 1) from 
the condition of invariance of these tensors. 

Therefore, the tensors (4. 1) are simultaneonsly reduced to diagonal form in the z 1, z 2 
coordinate system and according to (3.2) the vibrations along z I and z I are separated. 
Examples of such cross sections yield an elBpse and a rectangle. 

Another subgroup contains one nontrivial transformation: rotation through the angle ~. 
(An example of such a croa section is ixesented in Fig. 2). The tenson (4. I) can have a 
most general form. Nevertheless, even in this case coordinate sy#terns in which the vibra- 
Lions separate can exist in principle. It is easy to see that the necematy and sufficient 
conditions for separation of the vibratious are the equalities ] ~ I  r~Y ---- ] ~  resulting 
from the theorem about simultaneons reduction of two symmetric matrices to diagonal 
form by an orthogonal transformation. 
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~ .  ~ x a m p l 8 |  o f  e v a l u a t i n g  the  f u n c t i o n  G and c o e f f i c i e n t |  o f  
the  t e | o l v i n g  e q u a t i o n .  In those cases when the Neumann problem (2.5)  admits 
of  simple analytical  solutions, the coefficients A '~,  B ~ ,  Ca~ of the quadratic form 
~ 0  in (2. 6), and therefore, the coefficients of the second approximation resolving equa- 

tion (3.2)  can be calculated.  Presented below are results for a circle, a circular ring, an 
ellipse, and a rectangle under the condition that the longitudinal force is p ~ 0 on the 
lateral surface. 

1 ° .  C i r c l e  o f  r a d i u s  r 

2 " .  R i n g  

G =  

~I 2a~ 

t2 (3rt x~xa ) x~u~ G = - ~ -  - -  

A ~ ra a a~'a B aft Ca(~ ~a;~ _~-- __ 2.96 5 ~  _ 2 
27 ~ ' - -  7r~ ' .~ 

ti2a~ ~ r 4 4V 2 -~- 12V ~- 7 ~/~ 
48 t + v  

w i t h  r a d i i  r~ a n d  r 2 

t2 ( 3 r.2r~__~ _4_ 3 (r ~ + rs~)__ x~x~) x~ca 
7r~ -b 34r~r~ ~ + 7r~ ~ xf~xf~ 

2-96 
Ba~ ~ 7rl a "}- 34rl~r2 ~ n t- 7r~ 4 ~al3, Ca~ __ 

2 ~ 
3 

t [ 4 ~  -4- t2v "4- 9 (7r~_4_34r1~rs~_~_7r~).{_v(,~_~3)(r~_{_rZrs~_~_r~)l~tf~j 
54 (I + v)L 8 

3 ° .  E l l i p s e  Xl2/a  ~ -~ x s s / b S ~  t 

l 

+ (a s - -  b~)(3x~ ' - -  x ,  2 + 3aS) O,X,} x ,  + [a ~-~ b, t +-. 2] 

t 2 b ~ l [ ~ ( b ~  4_ 4 a ~ b 2  5a,)Oxx1 - 24(3a2.4  - b2)ul] F1 --  a' (5a2 + 

b a (Sia ~ 7 t- 30a2b 2 -~- b a) 48 (3a 2 "4- b2) 
A l l  ---~ B l l  i08 (3a 2 -f- b~X5a 2 -~- 2b ¢) ' a 4 (5aZ -~- 2b z) 

Cll  ~--- 2 b 2 (6a ~ -t- b ~) 
3 a $ (Sa 2 -~- 2b 2) 

~11 = l a s 
i + , ~  48(3a~+ bS) [ 4 0  A'v)~a~(5a~-4-. 2 b s ) - v ( t  -4-v) X 

( 3 a '  -}- 6a~b 2 -- b') - -  4vSb'] 

The symbol [a ~ b, t ~ 2] denotes the preceding component with a and b and 
the subscripts 1 and 2 interchanged. Values of rs, A~s , B2~ , C~2, ~n are obtained 
from the formulas for rl, A11, Bn, C1z, ~11 by the replacement a'~-~ b and the 
subscripts I ~-> 2. The remaining components of the tensors Aa~, B a~, Ca~, ~a~ 
arc zero on the principal axes of inertia. 

4 ° R e c t a n g l e  I x  1 ] ~ a, [xs  [ ~ b 

=_ 4 2 b ~ G {--~--[(x12--3a~')F,+(-~-xl + - -a~)OxX,]+ 
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c ~  

,"{~, nSch(n~a/b ) s h - T - C o s - - - T - - 0 D ¢  1 + [a+-,b, t + - . 2 1 - -  

6 

27.45 b ~I~ ~ ' B l l  = ~ ' C l l  = 9a s 

c o  

2 _ , F 5 v + 6  ,~s [25b~--79a ' a 2 I t h n ~ b ~ ]  

n-~-I 

The values of rs ,  Ass , Bss , Css , 1Its9 " am obtained by the replacement a .-~ b and 
the subscripts i .-~ 2, while the remaining components of the tensors A ~ ,  B ~ ,  C ~ ,  
~ #  are zero on the principal axes of inertia. 

In particular, for a square with side a 
o o  

( ) A ~  = a4 2779.45 ~84 t h n ~  6 ~ ,  B ~ = - ~ - 0  , C ~ --- ~ 
n-~-I  

c ~  

2 , [ 5 v + 6  ~s 

w~-~- 1 

6, D l l p s r $ 1 o n  e q u a t i o n .  A dispersion equation, the relation between the fre- 
quency o) and the wave number k for which the functions 

U(z ~ U~z°e i(~t-k~c), U(z ° ~ const 

am solutions of the problem of free vibrations of an infinite bar, can be obtained from 
(3. I) or (3.2). Correspondingly, we have for (3.1) and (3.2) 

(po  s - -  EldI  n + poSkSIn + Eke~11) (p(o s - -  Eld I~  + pco~kSIss + (6.1) 

Ek6~ss) = (po)Sk2Ii~ - -  EldI,2 + EkeT'ls) ~ 

llrlly, )] [p(o s -- Eldlss + (6.2) [pco 2 - -  EldI,, + pcoSk 2 (lit + ~ -t 

~I'~I:,)] [po)Sk ~ (I~s + ~ -~ po)SkS (iss + v -i = IFlly,) __ 

~F'~I-'~ Ek~I~l] Ek~I~] [pa)Sk s (I~s + ~ ~,/ - -  

The dispersion equation is an invariant characteristic of a mechanical system, hence 
(6. i) or (6.2) should yield a second approximation to the exact dispersion equation cor- 
responding to the thme-dimenaionai problem. 

As is known, the exact dispersion equation has an infinity of branches. The Bemoulli- 
Euler equation describes "flow vibrations" and corresponds to the branches a) 0 (k) for 
which 0% (0) = 0. Hence, the approximate dispersion equation considered should ratine 
precisely these branches. 

An attempt is made in many papers to describe simttltaneously two branches of the 
dispersion curve ¢% (k) and ot (k), 0)1 (0) ~ 0. In this connection, it should be empha- 
sized that the order of smailness is decreased by one for the other branches by different- 
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iation with respect to x and t hence,  the problem remains essentially three-dimension- 
al and the meaning of the one-dimensional  approximation requires explanation. 

The second approximation can be constructed by means of the exact  dispersion equa- 
tion of the three-dimensional  problem and the equation in the x - -  t representation 
can be reproduced by means of the approximate dispersion equation, Confirmation of 
the asymptotic  accuracy of the approximate equations can be based on this. 

Pochhammer [7] constructed the dispersion equation of the three- dimensional problem 
f (co, k) ==- 0 for a bar of circular cross section. Expanding ] (to, k) in a series in to, k 
and keeping terms of the order of r 2 and r 4, we obtain 

8v -}- 29 r~to,Zk ~ E 7~ 4- 9 r4k6 _= 0 (6.3) 
pro 2 - -  r ~k4 @ D ~ - -  96 (t -4- v-----~ 

After ~ub~tituting the value of ~=~ for a bar of circular section into (6. 1), this latter 
differs from (6 .3)  by the term 

8v + 23 r2k2 (90)2 _ E r 2 k  4 
24 ~ 

i . e .  they am equivalent  in the sense mentioned in Sect. 3. 
The values of  ~=t3 calculated in Sect. 5, permit  writing a second approximation equa. 

tion in cases for which the exact  equation is unknown. 

7 .  A | y m p t o t l c  & c c u t a c y  o f  t h e  h y p o t h e | e t  ( 1 , 8 ) ,  we  represent the 
displacement  vector of a point of  the bar w -~ (z, x ~, t) as 

w i (x, x ~, t) = u i (~, t) "4- e~ (x, t)x a + x /~a3 (xax f~ - -  I a~) + gi (x, x a, t) 
/ =~ 0 ,  t ,  9, 

The subscript ° is ordinarily omit ted in writing the projections of  the vectors and ten- 
so= on the x% axis. 

Let us require that the functions gi satisfy the constraints 

<gi> = 0 ,  < g ~ x % = O ,  < g ~ x ~ > = 0  (% 1) 

l Then the functiom u t, e a, ~ will be defined uniquely in terms of tim functiom w *, 
namely  

u i (z, t) = <wt>, e~ = 

A mutual ly ot to- to-one correspondence exists between the set of  functions {w i} and a 
number of  sets {u t, e~, ~,~, gt}. We obtain tim system of equations for the functions u t, 
ela, X~,  gi from the condition for the ex t remum of the functional (1. 2). Hence g is an 
odd and ga an even function of x a in the problem of transverse vibrations, The system 
of constraints (7.1)  reduces to the constraints 

<ga> = 0, <gxa) ~- O, (g~,f~x'~) = 0 (7.2)  

We obtain the foUowing systean of Euter equaUom and boundary conditions in the varia- 
tion of the functional:  

Equations for u~ 

Equations for e~ 

(7.3) 
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ix (e?: + <g,~>) - -  Ira (EOxX.t + L~ (ey)) = N a / 

lay  (XXw + (~" + 2ix)axe,t) = T- <PXa>, x = ~ l 

Equations for X~t~v 

~/~Lx (Zaol~)<( z~xl~ - -  I ~ )  (xax,t - -  l~w)> - -  <Lx (g-) x~x,~> - -  

ix<(x~xw - -  I~,¢)Oxg.a)= Da~ w / 

[ V ~ o ~ o < ( ~ z  v - -  i ~ )  (z~'x ° _ i~)> + 

<(x~x "~ - -  f " )  (g,~. + o~'g:,)>l = -~ <p~ (zax ~ --/r~-~)>, 

Equations for g 

(7 .4)  

('~. 5) 

(7.6)  

on F 

Ixag + (~. + ~)a~e~ + L~ (g) = t~i'~,,, (x, t) 

1 (x~x.~ l~,t) t__ P 

~g,~ -f- (~ + 2ix)Oxg = -T P -4- ~a (x, t)xa, z = -~ t 
Equations for g~ 

0 ~,Xg~ + (~ + ~) ~ (axg ÷ g~) + L, (g~) + ~ L 1  (X~a~) (x~x~ - -  I ~ )  = A~(z, t) (7. q) 

~, (Oxg -~ g~,f~)n a -Jr- 2~tg(~,~)n ~ =- Pa "~ ~'af~.~ x~x'v on F 

IX [g,~ + Oxg,~ + ~a + ~l~O, xX~t~w ( x~xv - -  I ~ ) 1  = ~:  P~, x = :V t 
Here 

DadV : :  ~ Pa ( xf~x't - -  l~V) dF, LI = IxOx 2 - -  POts, L2 : (~, + 21~) 0x ~ - -  pO t ~ 
p 

Xa = ~ a  

Ya, £a, Aa, ~'aBv are Lagrange multipliers corresponding to the conditions (q. 2). 
The system of equations (7. a) - -  (7. q) is an exact  system of equations describing the 

dynamical  bending of a bar of arbitrary thickness. It can be shown that this system is 
equivalent  to the classical equations of three-dimensional  elastici ty theory. To  es t imate  
the orders of the required quantities, we make the change of variable x e = hz a . Then 
0 ~ z ~ i .  

The system (7.3)  - -  (7 .7)  can be investigated as a system containing the small  para- 
meter  h by using formal asymptotic expansions, We hence consider that differentiation 
with respect to x does not change ,but  differentiation with respect to t does increase  
the order of  smallness of the quantities by one. 

Let us represent the required functions and the given external  forces as the following 
expansions in h (/ is any of the functions ua, ea, ¢p~, Za$,t, g, g~): 

! = ~ hSl (s) 

oo oo oo 

Pa = h'  Z hsp(as)' Na  = ha E hSN(S)' D,.,$.~---- h' Z hSD(aS)'r 
8 ~ 0  ,$==0 ~ 0  
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oo oc 

Pc~ hs ~d s°(s) = h .~ , P ~ h'Z E hSP(S) 
, s ~ O  8 ~ 0  

The hypothesis about the nature of the differentiation with respect to time corresponds 
to the fact that all the functions depend on t in terms of the parameter x = ht. The 
expansions for the external forces are selected in such a way that the expansions of the 
functions required could start with h ° but not with negative powers of h. 

Substituting these expansions into (7.3) - -  (7.7) and equating coefficients of identical 
powers of h will yield a system of recursion equations (h is the Laplace operator in the 
variables z=) 

po?,,~ - ~ -  ~,o~ ((p~) + <~.~,.(~+1),~., = ,0~-~) / s (7.8) 

B (q)~) + <g.=(~+z)>) - -  JaY (~,OxX~ ~-2) + (L + 2p,) O=Ze (~-2) - -  (7.9) 

pot2 e (~-`)) = N(al~-e) / S 

'~ ! v ^ tv(~:) _L O~:e(~)) + 2~, (X(~) ~d~ " ,,(k) , 1 ¢,LO ~,(~-2) - , ~  (-¢,'(~)a ~,.~ - -  ( (~ )  T ~,(,,y) v d B ) - -  /2 , r  x ^=att - -  ( 7 .  i 0 )  

pa 2'v(k-a')~, ((z'~z IJ" ja~) jp, y)) __ ((p.Ox2g(ak) __ pOtlg(k-2) ) gBZy> -- ~t ^aol~ J - -  ( z B z v -  

,'0 ,(~+1) jt>¢)> == n(~-~) ' S  i a " x~,,:¢ ( z B % -  "~"B'c I 

ttAg (~) + (X + B) Oxg(,~ -1)a + (i~ + 21~) d~ g(~-2)_ pOt:g(k-4):: p,z=T~-3) (7.11) 

g(~)a) + l.tOpg~'-'z)_ potageS-,) + (7.12) ,aAg~) + (;~ + ~.) (o~,g (~-~) + ,~ 

h 0 o ,v(k-&) nO 2v(k-6)~ (~'-BZ'Y - -  J~'Y) = A (k-2) I/2~1~ x%%tBY - - ~ "  I "~'aB'Y ! 
H e r e  

g,a = Og / OZa, S = Q / h 2, jab ---_ I=B / h z 

A recursion system of boundary conditions corresponding to (7.8) - -  (7.12) can be ob- 
tained by similar means. Solving (7.11) for k = 0, t,  2 and (7.12) for k = 0, t ,  2, 3 
successively for the appropriate boundary conditions, we obtain that ~),  g(3), g~), respec- 
tively, are the first nonzero coefficients in the expansions for qp=, g, g a .  All the quanti- 
ties with negative ordinal numbers are hence set equal to zero and the solutions of(7.10) 
for %a~y for k = 0, t are used. 

Let us solve (7.10) in a first approximation. It is easy to confirm that any third-rank 
tensor which is symmetric in the last two subscripts can be represented as (the symmetri-  
zation operation is marked by parentheses) 

7a~-~ : 7.(=.~)y + X(ay)B - -  XC[~y)= (7.13) 

In a first approximation(for k = O) (% i0) is of the form 

2L/v(YaB)a (x(vo) + (o) (Z(°)(=av)J~" + (7.14) O~:e,,, ) + 2~ x(°X~t~J ~) = 0 

Performing a convolution of (7.14) with ~=~ and ~BY in sequence, we obtain after cal- 

culations X(= ° ) -  ~" O e (°) (7.15) 

x(o) : ~/~ 6~z(o) (7. z6) (aB)-¢ 

From (7.13) and (7.16) we have 
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For k = I Eq. (7.10) agrees with (7.14), and therefore, its solution is given by (7.17) 
and (7.15). 

In a flint approximation, we obtain the Bemoulli-Euler equation from (7.8), (7.9) and 
(7.15). We therefore have for the orders of the required quantities 

q;a N h  2, g N h  a , ga  N h  4 

After substituting the displacement~ in the form 

w = e~x  ~' + g,  w~, = u~ + l/~Xa~ v ( x o x  v - I t~v) + g .  

it can be seen from the formula for the functional (1. 2) that the integrand contains terms 
of the order of h ' ,  h t, h a, where the components containing g~ are of the order of h s and 
shonld be omitted in deriving the second approximation equations. Therefore, to obtain 
the second approximation it is necessary to set g~ = 0. Computing X~av by means of 
(7.17), we obtain the following asymptotically exact representation of the displacements: 

w = eax  A- L g, w a = u.. -~- 1/#XftR . 

The case when differentiation with respect to t ime does not alter the order of small- 
ness of the quantities is considered similarly and results in the same representation for 
the displacements. 

8. Comparison with other r e t u l t |  from ref ined  t h e o t i e | .  To obtain 
one-dimensional equations of the theory of bars, the method of hypotheses and the me-  
thod of series expansions in the transverse coordinates are usually applied. 

The classical aemonlli-Euler beam vibration equation is based on the hypothe~is for 
the displacements 

u, = --O,,u~, (x, t ) ~ ,  w~, = u~, (z, t) + V,x~ (z, t ) l ~  (s. 3.) 

Substituting (8.1) into (1. 2), assuming that differentiation with respect to t raises the 
order of smallness by one, and discarding terms of order h 4 and h s in the integrand, we 
arrive at the functional 

t, t t. t (8.2) 

ft - - |  --1 
tt 

F = V,I", [(X + ~)X~X~ --  2£X,,O2u~ + (X + 2~)Ogu~,O=tu~l 

The functional (8.2) differs from tim Bemoulli-Euler functional in the form of the func- 
tion F.  In order to obtain the known exlxe~ion, we note that the parameters Xa enter 
into the functional (8.2) without derivatives, hence, the Euler equations for Xct are alge- 
braic and easily solved X z 

Substituting the value of Xctinto the expre~ion for the elastic energy of unit length F 
results in the formula 

F : V i E I a ~ O x t u a O x g u ~  

The Rayleigh equation [12] is substantially based also on the hypothesis (8.1) and cor- 
responds to the fact that the component p l a ~ O t O x u a O t c g x u f ~  of the order of h a and des- 
cribing the rotational inertia of the crom section it kept in the functional (8.2).  It followt 
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from the above that the Rayleigh model is not asymptotically exact. 
The Timoshenko equation [13] is based on the representation of the displacement 

(L  3) which is valid for the second approximation. However, hypotheses reducing to two 

equalities <o~x~) - -  0, q~ = k~t~cp~ (8.3) 

(o a ~ = o U / o e ~ ,  o~ = OU/Oe~, q~ = ~<o~>) 

(q~ are the transverse force components and k is the shear factor) are used in place of 
the solutions of the equations written above for the functions X~ and g . From (8.3) 

~' Oxea, ~a + <g,a> ---- kq~a (8.4) 
follow X~ = ~ + 

respectively, and the system of equations for the functions u~ and e~ turns out to be 
closed. Solving this system for ua, we obtain the Timoshenko beam equation. In the free 
vibrations case it has the form 

pz i~Otau ~ = 0 (8.5) pOt~uc~ + + -ff  

It follows from the results of Sects. 2 and 7 that the relationshil~ (8.4) are not correct 
in the second approximation. The shear coefficient k in the Timoshenko model is con- 
sidered dependent on only the shape of the cross section. It should be emphasized that 
if k is introduced by using the second formula of (8.4), k = ql / (~QcPl) (it  is under- 
stood that such a definition is lxmible if  the vibrations occur in the (x, xl)-plane ) and 
is evaluated by the asymptotically exact theory, then k will depend not only on the 
shape of the cross section, but also on the external load (even for p = 0). 

Another method of defining the coefficient k can be proposed. Let us discard thesmall  
last term in a second approximation in the Timo6henko equation (8.5). Then (3.2) and 
(8.5) will be identical in form. For a complete agreement between the equations descri- 
bing the vibrations along the xl-axis (in cases admitting of separation of the vibrations), 
k should be defined by the formula 

k =  E (It,) 2 (8.6) 
~Fu 

A considerable quantity of papers (see the survey [ lq])  is devoted to evaluation of the 
shear coefficient k for different cro~ sections. To evaluate k Timoshenko used the 
stress distribution in a section according to elementary theory. A solution of the Saint- 
Venant problem about a cantilever beam was used in [22] to evaluate k by means of the 
second formula in (8.4). The equations in [22] have been obtained also by using the 
hypotheses (8.3) and are therefore not asymptotically exact. 

For the cases of a circle, ellil~e and rectangle, the formula (8.6) yields, respectively, 

4~ ~ + t 2 v  + 7 
k-X -- 6 (t + ~), (circle) (8.7) 

k-* = 4 ( i  + v) 2 (5 + 2ra-~) - -  4v2m -4 - -  ~ ( t  + ~)(3 + 6ra -2 - -  m "4) 
6 (t + ~)' (3 + m-') (ellipse) (8.8) 

1 9 i , # + 5 9 4 v + 3 2 4  ~ ( .~_ 6 °° t ) 
k-t = + "- n '  270 (t + v)' (I + ~;)" m-4 + m -- ~, -~ th nm-n-t (8.9) 

n = l  (rectangle) 

Here m = a / b, the semi-axis a is along the xl-axis. For vibrations along them2 - 
axis, m should be replaced by rn -1 in (8.8) and (8.9). 
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Presented below are numerical values of the coefficient k for a circle and rectangle 
for v ---- 0.3,from the data of different authors 

[13] [22] [14] Forrnulas(8.7), (8.9) 

Circle O. 750 O. 866 O. fit4 o. 930 
Rectangle 0.833 0.850 - -  0.872 (m = i) 

We note that in the case of a rectangle k is independent of the ratio between the sides 
rn according to Timnshenko [13] and Cowper [22]. It is seen from (8.9) that this assump- 
tion results in large errors in the evaluation of k corresponding to vibrations along 
different sides of the rectangle. For example, the values of k differ by 35% even for 
rn = 3 (at  ~ = 0.3). 

It should be emphasized that defining k by (8. 6) permits only the attainment of agree- 
ment of the resolving equations. The system of second approximation equations (2.7) - -  
(2. 9) and the system of Timoshenko equations generally remain different. 

The approximate equations of transverse vibrations of a circular cross section bar were 
obtained in [14] horn the three-dimensional dynamic equations by using a formal sym- 
bolic method. As hal  been shown in [23], the approximate equations of [14] are not asym- 
ptotically exact and do not agree with the Pochhammer equations. We note that the me-  
thod in [14] is only suitable for a circular bar. 

Exp&-,don of the displacement vector into a double power series in the transverse co- 
ordinates and integrating the dynamic equations of three-dimensional elasticity theory 
over the bar section reduce the initial problem to an infinite system of one-dimensional 
differential equations. Jacobi or Legendre polynomials are sometimes used in the expan- 
sions. Different approximate theories are obtained by cutting off the infinite series. This 
method was used in bar theory mainly to derive the longitudinal vibrations equations. 
The second approximation equations for transverse vibrations were obtained in [15, 16] 
by the series expansion method. Methods of cutting off the series mentioned in these pa- 
pe~ do not yield asymptotically exact equations. It should also be emphasized that the 
displacement vector in a second aplxoximation cannot be represented as a polynomial 
in a finite power of the transverse coordinates for every cross section. For example, ac- 
cording to Sect. 5, the displacement vector in a second approximation is not a polynomial 
for a rectangular or annular section. 

9 .  A p p o a d l x .  S e p a r a t i o n  o f  t r a n s v e r s e  a n d  l o n g i t u d i n a l l y  t o r -  
s i o n a l  v i b r a t i o n s  in  b a r s  w i t h  c e n t r a l l y - s y m m e t r i c  c r o s s  s e c t i o n .  
Let us consider an anlsotropic, linearly-elastic rectilinear bar with constant centrally- 
symmetric cross section. There is a plane of elastic symmetry perpendicular to the axis 
at each point of the bar. The bar is generally inhomogeneons, however its elastic proper- 
ties are centrally-symrnetric.We show that the transverse and longitudinal-torsional vi- 
brations are independent in such a bar. 

The concept of evenness can be introduced for functions defined in centrally-symmet- 
ric domains. Each function is relxesented as the sum of an even and odd function (the 
even functions are later denoted by a double, and the odd by a single prime). 

Let us consider the appropriate representation for the displacements 

w (x ~, z ,  t) = w' (=~, x, t) + w" (z ~, ~, t), 

w~ (x ~, z, t) = w~' (x s, z, t) A- w~ ~ (z ~, z, t) 
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The arguments z, t enter  as parameters  into these representations. Differentiation 
with respect to x and t does not change the evenness, but does i t  with respect to x ~ . 

Because of substituting the representations ment ioned into the functional  (1 .2) ,  this 
la t te r  is separated into the sum of two functionals, one of which depends only on w j ,  w', 

and the other on w~', w". In fact, the strain tensor components e,~',  e ' ,  e~" depend on 
wa", w', and the components ea~", e ~, e~'on w~', w ~. There follows from the central  
symmetry  of the e las t ic  properties that  the components of the e las t ic  modulus tensor are 
even functions of z ~ and from the exis tence of a plane of e las t ic  symmetry  that there 
are no products e~ea  and ee~ in the e las t ic  energy. Hence, the integral  of the e las t ic  
energy over the cross section is separated into a sum of two integrals,  one of which con- 
tains ea~'  , 8 '  and e~" and the other e ~ " ,  e", e~'. S imi lar ly ,  the integral  of the kinet ic  
energy over the cross section can be separated into integrals dependent  o n  Otw~z", Otw' 
and Otw.', Otw". Because of the l inear i ty ,  the functional describing the work of the ex-  
ternal  forces is separated correspondingly. 

The var ia t ional  problem under consideration is separated comple te ly  into two indepen-  
dent problems since the even and odd components of the functions can be varied inde-  

pendently.  I t  is natural  to ca l l  the problem containing the even component  of w~ and 
the odd component  of w the problem of transverse vibrations and the problem conta in-  
ing the odd component  of  w~ and the even component  of w the longi tudinal- tors ional  
vibrations problem. 

The authors are grateful  to L. I. Sedov, E. L Grigoliuk, V. V. Lokhin and A. N. Golubiat-  
nikov for discussing the research. 
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Equilibrium of an elastic half-plane with a rectilinear crack reaching the half- 
plane free boundary at an arbitrary angle is considered as a plane problem of the 
theory of elasticity. It is assumed that known compressive stresses are applied at 
considerable distance from the crack forcing the opposite boundaries of the crack 
to contact each other. Interaction between the crack boundaries are defined by 
the law of dry friction with cohesion. Mathematically this problem is analogous 
to that of a tectonic crack filled with a low-strength medium. First, the problem 
is stated and fundamental relationships are presented. The Wiener-Hopf equation 
of the considered problem is derived with the use of MeUin transform and Jones 
method. The exact analytical solution of the Wiener-Hopf equations is then 


